Total No. of Questions—12]

| Seat |  |
|------|--|
| No.  |  |

# [4757]-196

# S.E. (Information Technology) (Second Semester) **EXAMINATION, 2015** DATA STRUCTURES AND FILES

## (2008 PATTERN)

#### **Time : Three Hours**

1

## N.B. :- (i)Answer question Nos. 1 or 2, 3 or 4 and 5 or 6 from Section I and question Nos. 7 or 8, 9 or 10 and 11 or 12 from Section II.

- Answers to the two sections should be written in separate (ii) answer-books.
- Neat diagrams must be drawn wherever necessary. (iii)
- (iv)Assume suitable data if necessary.

#### SECTION I

| <b>1.</b> ( <i>a</i> ) | Explain various file opening modes with respect to text and    |
|------------------------|----------------------------------------------------------------|
|                        | binary files. [6]                                              |
| <i>(b)</i>             | Explain the features of a sequential file. Write a 'C' program |
|                        | to copy contents of one file to another file using command     |
|                        | line arguments. [6]                                            |
| (c)                    | Write an algorithm for linear probing without replacement      |
|                        | strategy. [6]                                                  |
|                        | P.T.O.                                                         |

Maximum Marks : 100

- (a) State advantages and disadvantages of sequential file and index sequential file.
  - (b) Explain the features of a direct file. Write a 'C' program to find the sum of the numbers passed as command line arguments.
  - (c) What are the characteristics of good hash function ? How can collision be resolved in a hash table.
- 3. (a) What is stack ? Write an algorithm to implement stack using linked list. [8]
  - (b) Transform each of the following infix expression to postfix form using stack. Show clearly the contents of stack : [8]
    (i) D B + C
    (ii) A \* B + C \* D
    - (iii) (A + B) \* C D \* F + C
    - (iv) (A C) \* (B + C D \* E) \* F).

#### Or

(a) Define implicit and explicit stack. What is the importance of stack in recursion ? Explain with suitable example. [8]

(b) Clearly indicate the contents of stack for evaluating the following postfix expressions. [8]
 Assume :

A = 8, B = 6, C = 10, D = 5, E = 7 AB - CD/\* E +.

- 5. (a) What are the disadvantages of linear queue. Write a 'C' program to implement linear queue using linked organization. [8]
  - (b) Write a pseudo C code for implementation of circular queue using array.[8]

#### Or

- 6. (a) Write a 'C' program to implement deque using linked organization. [8]
  - (b) Write a pseudo C code for implementation of priority queue. [8]

### SECTION II

- 7. (a) Define the following with respect to trees with examples : [8]
  - (i) Complete binary tree
  - (ii) Predecessor and successor
  - (*iii*) Height of tree
  - (iv) Skewed binary tree.
  - (b) Write functions for non-recursive inorder and preorder traversals for binary trees. [8]

[4757]-196

### P.T.O.

- 8. (a) Construct a binary tree from the given traversals : [8] Preorder : \* + a - bc/-de - + f g hInorder : a + b - c \* d - e/f + g - h.
  - (b) Write non-recursive preorder traversal algorithm for inorder threaded binary tree. [8]
- **9.** (a) Write an algorithm to perform DFS traversal for a graph. Perform the same for the given graph (Refer Fig. 1) : [8]





4

(b) Define the following with respect to graph with examples : [8]

- (i) Degree of node
- (ii) Isolated node
- (iii) Path
- (*iv*) Cycle.

[4757]-196

10. (a) For the graph given below find minimum spanning tree using Prim's algorithm. Show stepwise representation (Refer Fig. 2) : [8]





 $\mathbf{5}$ 

(b) Define a graph. For the given adjacency matrix draw the graph and its adjacency list : [8]

|   | A | В | С | D | E | F | G | H |
|---|---|---|---|---|---|---|---|---|
| A | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| В | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

| С | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |   |
|---|---|---|---|---|---|---|---|---|---|
| D | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |   |
| E | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | _ |
| F | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |   |
| G | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |   |
| н | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |   |

11. (a) Define AVL tree. For the given data, build an AVL tree and show the balance factor and type of rotation at each step.

 $64, \ 1, \ 44, \ 26, \ 13, \ 110, \ 98, \ 85.$ 

(b) For the data given below build a Huffman tree and find code of each symbol : [8]

| Character Weight |                                   | Weight                      | Character                              | Weight                                               |  |
|------------------|-----------------------------------|-----------------------------|----------------------------------------|------------------------------------------------------|--|
| 10               | I                                 | 4                           | R                                      | 7                                                    |  |
| 3                | к                                 | 2                           | S                                      | 5                                                    |  |
| D 4              |                                   | 3                           | Т                                      | 12                                                   |  |
| E 15             |                                   | 6                           | U                                      | 5                                                    |  |
| 2                | 0                                 | 8                           |                                        |                                                      |  |
|                  | Weight<br>10<br>3<br>4<br>15<br>2 | WeightCharacter10I3K4M15N2O | WeightCharacterWeight10I43K24M315N62O8 | WeightCharacterWeightCharacter10I4R3K2S4M3T15N6U2O8I |  |

12. (a) Sort the following numbers in ascending order using heap sort.Show the sorting stepwise : [10]

 $77, \ 62, \ 14, \ 9, \ 30, \ 21, \ 80, \ 25, \ 70, \ 55.$ 

(b) Distingusih between Huffman's tree, OBST and AVl in terms of their definition and application. [8]

Or